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Abstract 

Background  Early diagnosis of low ejection fraction (EF) remains challenging despite being a treatable condition. 
This study aimed to evaluate the effectiveness of an electrocardiogram (ECG)-based artificial intelligence (AI)-assisted 
clinical decision support tool in improving the early diagnosis of low EF among inpatient patients under non-cardiol‑
ogist care.

Methods  We conducted a pragmatic randomized controlled trial at an academic medical center in Taiwan. 13,631 
inpatient patients were randomized to either the intervention group (n = 6,840) receiving AI-generated ECG results 
or the control group (n = 6,791) following standard care. The primary outcome was the incidence of newly diagnosed 
low EF (≤ 50%) within 30 days following the ECG. Secondary outcomes included echocardiogram utilization rates, pos‑
itive predictive value for low EF detection, and cardiology consultation rates. Statistical analysis included hazard ratios 
(HR) with 95% confidence intervals (CI) for time-to-event outcomes and chi-square tests for categorical variables.

Results  The intervention significantly increased the detection of newly diagnosed low EF in the overall cohort (1.5% 
vs. 1.1%, HR 1.50, 95% CI: 1.11–2.03, P = 0.023), with a more pronounced effect among AI-identified high-risk patients 
(13.0% vs. 8.9%, HR 1.55, 95% CI: 1.08–2.21). While overall echocardiogram utilization remained similar between groups 
(17.1% vs. 17.3%, HR 1.00, 95% CI: 0.92–1.09), the intervention group demonstrated higher positive predictive value 
for identifying low EF among patients receiving echocardiogram (34.2% vs. 20.2%, p < 0.001). Post-hoc analysis 
revealed increased cardiology consultation rates among high-risk patients in the intervention group (29.3% vs. 23.5%, 
p = 0.027).

Conclusions  Implementation of an AI-ECG algorithm enhanced the early diagnosis of low EF in the inpatient 
setting, primarily by improving diagnostic efficiency rather than increasing overall healthcare utilization. The tool 
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was particularly effective in identifying high-risk patients who benefited from increased specialist consultation 
and more targeted diagnostic testing.

Trial registration  ClinicalTrials.gov Identifier: NCT05117970.

Keywords  Artificial intelligence, Electrocardiogram, Rapid response systems, Low Ejection Fraction, Randomized 
clinical trial, High-intensity care, Deep learning, Track and trigger system, Hospital information system, Electronic 
health records

Contributions to the literature

•	 This large randomized trial demonstrates the effec-
tiveness of AI-ECG algorithms in improving early 
detection of low ejection fraction in routine hospital 
care

•	 The study shows AI can enhance diagnostic effi-
ciency without increasing healthcare utilization

•	 Results provide a practical model for implementing 
AI tools in non-specialist settings

Background
Heart failure affects over 6 million Americans, causing 1 
million hospitalizations yearly [1]. This disease imposes 
significant health and economic burdens [2]. While cur-
rent guidelines focus on symptom management, preven-
tion and early intervention in left ventricular dysfunction 
is still important [3]. Asymptomatic left ventricular sys-
tolic dysfunction (ALVSD) is characterized by reduced 
LV systolic function without clinical heart failure symp-
toms. Early treatment initiation in patients with pre-
sumed ALVSD has been associated with improved 
outcomes [4–6].

While routine echocardiogram screening isn’t recom-
mended due to cost concerns [7], developing affordable, 
non-invasive tools to identify at-risk patients could be 
valuable. Previous research has underscored the utility of 
natriuretic peptides, a history of hypertension, myocar-
dial infarction, and ECG findings as valuable biomark-
ers for the detection of reduced left ventricular ejection 
fraction (LVEF) within a community-based cohort [8, 9]. 
While the readily available and cost-effective ECG holds 
promise as an ideal tool for identifying patients warrant-
ing echocardiogram examinations, the critical issue of 
limited ECG interpretation skills among general practi-
tioners [10] must be addressed. Consequently, the devel-
opment of an artificial intelligence (AI) algorithm capable 
of enhancing general practitioners’ECG reading profi-
ciency could offer an optimal screening solution within 
general medical practice and non-cardiology depart-
ments [11]. We previously introduced a deep learning 
algorithm designed for detecting LV systolic dysfunction 
using standard 12-lead ECGs [12]. However, there is no 

evidence yet to confirm that the AI-ECG model we have 
developed can truly improve the management of ALVSD 
in clinical practice.

A previous landmark randomized controlled trial 
(RCT) used AI-ECG in primary care to alert frontline 
physicians about patients at high risk for low LVEF [13]. 
The study found that in the intervention group, 2.1% of 
patients received a new diagnosis of low LVEF, compared 
to 1.6% in the control group. This difference was primar-
ily driven by the subgroup of patients with positive AI-
ECG results—14.5% in the control arm versus 19.5% in 
the intervention arm. This study highlighted the potential 
of applying AI-ECG in primary care. To date, no studies 
have specifically focused on hospitalized patients. Hospi-
talized patients are more likely to have low LVEF com-
pared to outpatients, but they also receive more intensive 
care, which may reduce underdiagnosis. This piqued 
our interest in understanding whether AI-ECG could 
improve the detection rate of low LVEF in hospitalized 
patients. We plan to conduct an RCT involving non-car-
diology inpatients to explore whether AI-ECG can still 
provide additional benefits in an inpatient setting.

Methods
AI‑ECG model and high‑risk classification
We employed a previously developed deep learning 
model that analyzes standard 12-lead ECGs to estimate 
the likelihood that a patient’s left ventricular ejection 
fraction (EF) is ≤ 50% [14]. Briefly, this model was trained 
on a large, retrospectively collected ECG dataset linked 
with corresponding echocardiographic EF measure-
ments. The AI model was designed to generate continu-
ous-valued predictions of EF.

To classify patients as “high risk,” we selected an opti-
mal probability threshold based on receiver operating 
characteristic (ROC) analysis. Specifically, we examined 
sensitivity, specificity, and the area under the ROC curve 
(AUC) across a range of cutoffs. We chose a threshold 
that balanced sensitivity and specificity, while maintain-
ing a clinically acceptable false-positive rate. Internal 
validation using a hold-out dataset demonstrated that at 
this threshold, the model achieved a sensitivity of 72.4% 
and a specificity of 89.1% for detecting EF ≤ 50%. Further 
details of the model’s architecture, training methodology, 
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and validation can be found in our previous publication 
[14].

In the present study, whenever a patient’s ECG yielded 
a model probability score greater than or equal to the 
threshold, the system automatically flagged the result as 
“AI high risk.” Conversely, patients with scores below the 
threshold were labeled “AI low risk.” For patients in the 
intervention arm, the hospital information system gener-
ated an on-screen alert to notify clinicians of the high-
risk status in real time; no such alert was provided for 
the control arm. Clinicians could then decide whether 
to pursue additional diagnostic evaluations (such as 
echocardiogram) based on both the AI classification and 
their clinical judgment.

Trial design and ethical statement
This trial was registered with ClinicalTrials.gov 
(NCT05117970) and followed CONSORT-AI Extension 
checklist guidelines. The study received ethical approval 
from Tri-Service General Hospital’s institutional review 
board (IRB) in Taipei, Taiwan (A202105120). Given that 
patient interaction was limited to Electronic Health 
Records (EHR) data collection, informed consent was 
obtained from attending physicians before trial initiation. 
This consent approach was justified by four principles: 
minimal patient risk (compliant with Taiwan Food and 
Drug Administration guidelines), universal hospital visi-
tor inclusion rather than specific population targeting, 
maintenance of participants’rights and welfare through 
standard clinical care, and full disclosure of AI-ECG 
results during medical decision-making.

At a Taiwanese academic medical center, we con-
ducted a RCT where attending physicians who provided 
informed consent were enrolled in the AI-ECG report 
system, while non-consenting physicians were excluded. 
Although patients were not directly enrolled as partici-
pants, we analyzed their EHR data to evaluate the AI-
ECG intervention’s effectiveness.

The study included patients who underwent at least 
one ECG examination between November 2022 and May 
2023 in the inpatient department under the care of non-
cardiologists. Our hospital follows international health-
care systems’ECG indications, primarily based on routine 
ward protocols and relevant clinical criteria, including: 
(1) routine ECG examinations for middle to advanced age 
patients requiring operation or hospitalization, (2) ECGs 
for patients with symptoms related to heart rhythm dis-
turbances, chest pain, or suspected acute coronary syn-
drome, (3) ECGs for patients with existing or suspected 
cardiovascular diseases, (4) evaluation of bradycardia 
or tachycardia, (5) assessment of electrolyte imbal-
ances and drug toxicity, and (6) monitoring of patients 
with implanted cardiac devices. Exclusion criteria were 

applied to patients under 18 years old or patients with 
LVEF of ≤ 50% within the previous 180 days. The physi-
cians used the six ECG examination criteria according 
to clinical practice guidelines. These criteria were not 
recorded as independent data points for each participant. 
Therefore, they did not appear in the dataset. Our analy-
sis focused solely on patients cared for by attending phy-
sicians who had provided informed consent.

Randomization
At our hospital, each patient is assigned a unique 7-digit 
medical record number, from a pool of 107 possible com-
binations. We implemented patient-level randomization 
rather than physician-level assignment to maximize fol-
low-up retention and ensure consistent care throughout 
the 30-day study period. Before beginning the trial, we 
used simple random sampling to divide these 10 possible 
medical record numbers equally, allocating 5 numbers to 
the intervention group and 5 to the control group. This 
randomization scheme was established before patients 
received their medical record numbers, enabling pre-
allocation of future patients to study groups based on 
their subsequently assigned medical record numbers.

Data collection process
We divided our study population into high-risk and 
low-risk subgroups to evaluate the warning message’s 
impact on medical care. For all patients who had at least 
one high-risk ECG (in both intervention and control 
groups), we started the follow-up period from the time 
of their first AI-identified high-risk ECG. This timing 
was applied consistently across both groups, even though 
control group patients did not receive warning messages. 
For patients whose ECGs showed no high-risk findings, 
the follow-up period began at the time of their first ECG 
examination.

For high-risk patients, we selected their first high-risk 
ECG as the index time, as this moment represented the 
earliest opportunity for medical intervention and poten-
tial outcome improvement. For low-risk patients, who by 
definition had no high-risk ECGs, we used their first ECG 
as the index time. While these different index time defini-
tions created distinct high-risk and low-risk subgroups, 
this categorization was independent of the study’s rand-
omization process.

We extracted patient demographic and clinical data 
from our hospital information system, including sex, 
age, and pre-existing medical conditions identified using 
ICD-9 and ICD-10 codes: Diabetes Mellitus (DM: ICD-9 
250.x; ICD-10 E08.x-E13.x), Hypertension (HTN: ICD-9 
401.x-404.x; ICD-10 I10.x-I16.x), Hyperlipidemia (HLP: 
ICD-9 272.x; ICD-10 E78.x), Chronic Kidney Disease 
(CKD: ICD-9 585.x; ICD-10 N18.x), Acute Myocardial 
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Infarction (AMI: ICD-9 410.x; ICD-10 I21.x), Stroke 
(STK: ICD-9 430.x-438.x; ICD-10 I60.x-I63.x), Coronary 
Artery Disease (CAD: ICD-9 410.x-414.x, 429.2; ICD-
10 I20.x-I25.x), Heart Failure (HF: ICD-9 428.x; ICD-10 
I50.x), Atrial Fibrillation (Afib: ICD-9 427.31; ICD-10 
I48.x), and Chronic Obstructive Pulmonary Disease 
(COPD: ICD-9 490.x-496.x; ICD-10 J44.9).

Primary and secondary endpoints
The primary outcome of this study was the incidence of 
newly diagnosed low EF (≤ 50%) within 30 days. Second-
ary outcomes included echocardiogram usage and 30-day 
all-cause mortality.

Post‑hoc analyses
During data examination, we observed variations in how 
echocardiograms were utilized among high-risk patients. 
To explore this pattern, we conducted an additional anal-
ysis examining the relationship between cardiology con-
sultation rates, echocardiogram usage, and the detection 
of newly diagnosed low EF. Because cardiology consulta-
tions were not originally defined as a secondary endpoint 
in our protocol, we have designated these analyses as 
post-hoc.

Sample size
We performed sample size estimation using a signifi-
cance level of 0.05, a statistical power of 0.80, a sample 
size ratio in intervention and control groups of 1.0, a 
hypothetical proportion of controls with a primary end-
point of 0.03 [15] and a relative risk of 1.32 [13], and the 
minimum number in intervention and control group 
were both 6,032 per arm.

Statistical analysis
Statistical analyses were performed using R version 
3.4.4, with statistical significance defined as p < 0.05. 
Patient characteristics and ECG features were sum-
marized using means with standard deviations or per-
centages where appropriate. Student’s t-test evaluated 
differences in randomization and AI-ECG predictions, 
while chi-square test analyzed categorical variables. We 
utilized a Cox proportional hazard mixed effect model 
(R package"coxme"version 2.2–18.1) to compare primary 
and secondary endpoints between intervention and con-
trol groups, incorporating enrolled physicians as random 
effects. Treatment effects were expressed as hazard ratios 
(HRs) with 95% confidence intervals (95% CIs), and event 
cumulative incidence was visualized using Kaplan–Meier 
curves. In this study, we elected to use a Cox propor-
tional hazards mixed-effects model, rather than a linear 
(or logistic) regression model, for several reasons. First, 
our primary outcome (newly diagnosed low EF) was 

measured as a time-to-event outcome, and some patients 
were censored if they were discharged, transferred, or lost 
to follow-up before day 30. Cox models naturally handle 
such right-censoring, whereas linear or logistic regres-
sion would not capture the timing of each event. Second, 
the use of a mixed-effects model allowed us to include 
attending physicians as a random effect to account for 
potential clustering of clinical decision-making. This bet-
ter reflects real-world practice variations and prevents 
overestimating the precision of our estimates. Finally, a 
proportional hazards framework provides hazard ratios 
that describe how the instantaneous risk of a new low EF 
diagnosis changes over time—an approach well-suited to 
many clinical outcomes that may arise at varying points 
within a specified follow-up window. Subgroup analyses 
stratified by age, sex, and baseline comorbidities were 
performed, with subgroup effects assessed through inter-
action terms in the Cox model. All analyses beyond the 
primary endpoint were considered exploratory.

Results
Patient characteristics
As depicted in Fig.  1, the final analysis encompassed 
6,840 patients in the intervention group and 6,791 
patients in the control group. Within these groups, the 
AI-ECG identified 629 patients (9.2%) as high-risk for 
LVD in the intervention group, and 583 patients (8.6%) 
in the control group. Physicians may receive AI-ECG 
alerts for high-risk patients in the intervention group and 
subsequently conduct thorough assessments of their cur-
rent health status, arranging appropriate examination for 
them. The mean age of patients was 59.86 ± 17.38 years 
in the intervention group and 59.91 ± 17.22 years in the 
control group, with a nearly equal distribution of 45.4% 
male patients in both the intervention and control groups 
(Table  1). For more detailed comparisons between the 
intervention and control groups stratified by AI-ECG 
findings, please refer to Table S1.

Primary endpoint analysis
Figure  2 illustrates that in the overall population, there 
was a significant difference in the occurrence of newly 
diagnosed low EF within 30 days between the two groups, 
with 1.5% in the intervention group compared to 1.1% in 
the control group. The hazard ratio (HR) was 1.50, with 
a 95% confidence interval (CI) of 1.11–2.03. The active 
warning message in the intervention group increased 
the detection of newly diagnosed low EF by 55% (HR: 
1.55 and 95% CI: 1.08–2.21). However, the opportunity 
to review AI-ECG reports had limited impact on the AI-
defined low-risk population (HR: 1.21 and 95% CI: 0.67–
2.16). The effect of the intervention on newly diagnosed 
low EF was largely consistent across various subgroups 
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(Fig.  3). Interestingly, there was a nonsignificant trend 
indicating more pronounced benefits among male or 
younger patients, as well as those with diabetes mellitus, 
hypertension, chronic kidney disease, hyperlipidemia, 
and coronary artery disease. On the other hand, the ben-
efits were also as evident in patients without acute myo-
cardial infarction, stroke, atrial fibrillation, or chronic 
obstructive pulmonary disease.

Secondary endpoints analysis
Across the entire population, there were no signifi-
cant differences observed in the proportions of patients 
undergoing echocardiogram between the control and 
intervention groups (17.3% in the control group com-
pared to 17.1% in the intervention group, HR: 1.00 (95% 
CI: 0.92–1.09)). Similarly, in terms of all-cause mortal-
ity, there were no statistically significant distinctions 
observed between the control and intervention groups 
across the entire population (4.5% in the control group 
compared to 4.3% in the intervention group, HR 1.00 
(0.84–1.17)). In the analysis of secondary outcomes 
within the AI-defined high-risk or low-risk populations, 
there was also no difference between the intervention 
group and the control group. (Fig. 4). Notably, although 

the proportion of echocardiogram showed no statisti-
cally significant difference across the entire population 
or within the AI-defined high-risk or low-risk groups, we 
observed that the proportion appeared slightly higher in 
the control group.

Comparison the effectiveness of intervention and control 
groups
Of the participants in the Intervention group (n = 6840), 
9.2% (629 individuals) found to be high-risk group by AI-
ECG. Of those in the high-risk group, 231 participants 
were arranged for echocardiograms by physicians. Subse-
quently, 34.2% (79 of 231) of individuals been diagnosed 
with low EF. Compared to participants in the Control 
group who found to be high-risk group recommended 
echocardiogram, the AI-support group exhibited a 
higher positive predictive value for low EF identification 
(34.2% [79 of 231] vs 20.2% [50 of 248]; p < 0.001) (Fig. 5). 
Moreover, in Figure S1, we also noticed that when low EF 
is categorized by different severity levels, the real impact 
is seen primarily in the increased detection of moderate 
low EF. In the intervention group increased the detec-
tion of newly diagnosed low EF between 31 to 40 by 132% 
(HR: 2.32 and 95% CI: 1.32–4.09). Alternatively, In the 

Fig. 1  CONSORT-AI flow diagram. Abbreviations: IPD, inpatient department; ECG, electrocardiography; AI-ECG, artificial intelligence-enabled 
electrocardiogram for LVD (left ventricular dysfunction) stratification; and EHR, electronic health record
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intervention group increased the detection of newly diag-
nosed low EF between 31 to 50 by 76% (HR: 1.76 and 95% 
CI: 1.17–2.64). However, there was no significant differ-
ence in the detection of mild (EF between 41 to 50) or 
severe (EF < = 30) cases.

Post‑hoc analysis
It’s worth noting that although more low EF patients were 
identified in the Intervention group, the proportion of 
patients receiving echocardiogram rates was not higher. 
Given our observation of higher cardiology consultation 
rates among high-risk patients, we delved deeper into 
the mechanism behind the increased detection of low 
EF cases. Table  2 reveals a significant difference in car-
diology consultation rates between the intervention and 
control groups for all patients in the high-risk category. 
The intervention significantly increased cardiology con-
sultation rates among high-risk patients (29.3% vs. 23.5%, 
p = 0.027). This effect was not observed in low-risk 
patients (5.1% vs. 4.6%, p = 0.279). Interestingly, the over-
all echocardiogram rates among patients who received 
cardiology consultations were similar between the inter-
vention and control groups for both high-risk (52.2% vs. 
49.6%, p = 0.736) and low-risk patients (39.2% vs. 38.3%, 
p = 0.897). However, among high-risk patients who did 
not receive cardiology consultations, the control group 
had a higher rate of echocardiograms compared to the 
intervention group (40.4% vs. 30.3%, p = 0.002). As our 
results in Table 2 demonstrate, physicians in the interven-
tion group may have felt more confident in the AI-ECG 
results, leading to more selective use of echocardiograms, 
while those in the control group, lacking this AI support, 
might have been more inclined to order echocardiograms 

Table 1  Patient characteristics stratified by randomization

Abbreviations: SD Standard deviation, DM Diabetes mellitus, HTN Hypertension, 
CKD Chronic kidney disease, HLP Hyperlipidemia, AMI Acute myocardial 
infarction, STK Stroke, CAD Coronary artery disease, Afib Atrial fibrillation, COPD 
Chronic obstructive pulmonary disease

Control
(n = 6791)

Intervention
(n = 6840)

p-value

Stratification by AI-ECG 0.210

  Low risk of LVD 6208(91.4%) 6211(90.8%)

  High risk of LVD 583(8.6%) 629(9.2%)

Demographics

  GENDER 0.997

Female 3710(54.6%) 3737(54.6%)

Male 3081(45.4%) 3103(45.4%)

Age (mean ± SD) 59.91 ± 17.22 59.86 ± 17.38 0.859

Age group 0.799

  < 65 y/o 3981(58.6%) 3971(58.1%)

  65–75 y/o 1540(22.7%) 1572(23.0%)

≥ 75 y/o 1270(18.7%) 1297(19.0%)

Comorbidities

  DM 1528(22.5%) 1493(21.8%) 0.344

  HTN 2227(32.8%) 2281(33.3%) 0.491

  CKD 1517(22.3%) 1507(22.0%) 0.667

  HLP 2285(33.6%) 2274(33.2%) 0.619

  AMI 132(1.9%) 142(2.1%) 0.582

  STK 683(10.1%) 653(9.5%) 0.316

  CAD 1241(18.3%) 1185(17.3%) 0.147

  Afib 451(6.6%) 473(6.9%) 0.524

  COPD 769(11.3%) 754(11.0%) 0.578

Fig. 2  AI-ECG intervention for primary endpoint. Kaplan–Meier curve analysis of new-onset low ejection fraction at 30 days. The p for interaction 
between risk stratification of AI-ECG and intervention/control was 0.023
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as a precautionary measure for patients they identified as 
high-risk through traditional methods. We also analyzed 
EF distributions among high-risk patients who received 
both cardiology consultations and echocardiograms. No 
significant differences were found between the interven-
tion and control groups (p = 0.157). In Table S2, A nota-
ble finding was that in the intervention group, high-risk 
patients with cardiology consultations were significantly 
more likely to receive an echocardiogram compared to 
those without consultations (52.2% vs. 30.3%, p < 0.001). 
This difference was not observed in the control group 
(49.6% vs. 40.4%, p = 0.068). These results suggest that 
the intervention was effective in increasing cardiology 
consultations for high-risk patients, which may have led 
to more targeted use of echocardiograms. This approach 

could potentially improve the detection of low EF cases, 
even though the overall proportion of echocardiograms 
performed was not significantly different between the 
groups.

Discussion
While numerous AI algorithms have been developed and 
validated for medical applications, only a handful have 
undergone prospective evaluation in RCTs. The cur-
rent study stands as one of the pioneering RCTs aimed 
at assessing the efficacy of an AI-powered clinical deci-
sion support tool in everyday clinical practice. The trial 
highlights its success in enhancing the detection of 
low EF, a condition often lacking noticeable symptoms 
and frequently underdiagnosed in its early stages. By 

Fig. 3  The forest plot of AI-ECG intervention for primary endpoint. Subgroup analysis in patients with a high risk of low ejection fraction identified 
by AI-ECG for new-onset low ejection fraction within 30 days. The p for interaction was two-sided, with no adjustment for multiple comparisons
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establishing an information technology infrastructure 
that automatically analyzes ECGs and promptly com-
municates AI-generated results to healthcare providers, 
this novel tool offers a promising avenue for early iden-
tification and management of low EF. This, in turn, holds 
the potential to mitigate the disease burden and reduce 
mortality in larger populations. Nonetheless, it is cru-
cial to underline that further investigations are impera-
tive to ascertain the cost-effectiveness of this approach 
and gauge the subsequent clinical impact of these newly 
established diagnoses.

The addition of AI to ECG can enhance the value of this 
widely used, cost-effective test, but its impact depends on 
several factors. It’s most useful in populations with higher 
rates of missed or delayed diagnoses, as asymptomatic 
left ventricular dysfunction affects 3%−6% of the general 
population and can be treatable if detected early [16]. 

In 2019, Attia’s algorithm achieved an AUC of 0.93 for 
detecting patients with EF ≤ 35% [16]. Our research has 
yielded similar accuracy [12]. Adedinsewo et al. found an 
algorithm with an AUC of 0.89 for identifying patients 
with EF ≤ 35% and an AUC of 0.85 for EF < 50% [17], 
outperforming the NT-proBNP test [18]. Kashou’s algo-
rithm showed an AUC of 0.93 and sensitivity and speci-
ficity over 85% for EF ≤ 35% and an AUC of 0.97 for EF 
≤ 40% in a community-based cohort [19]. These results 
highlight the potential of AI-enhanced ECGs in diagnos-
ing asymptomatic left ventricular dysfunction, especially 
in high-risk populations [19].

The magnitude of impact in our study is also contin-
gent upon the responsiveness of healthcare professionals 
to AI-driven recommendations. In a prior investigation, 
the intervention led to a discernible escalation in the uti-
lization of echocardiograms, with rates rising from 38.1% 

Fig. 4  AI-ECG intervention for secondary endpoint. Kaplan–Meier curve analysis of underwent echocardiogram and all-cause mortality at 30 days
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Fig. 5  The effectiveness for low ejection fraction diagnosis in AI-ECG-identified high-risk between Intervention and Control groups. Stacked 
bar plots display the proportion and percentage of events by each condition

Table 2  Post-hoc analysis for mechanism of more low EF findings

Abbreviations: EF Ejection fraction

High risk Low risk

Control Intervention p-value Control Intervention p-value

All patients n = 583 n = 629 0.027 n = 6208 n = 6211 0.279

  Without cardiologist consultation 446(76.5%) 445(70.7%) 5921(95.4%) 5897(94.9%)

  With cardiologist consultation 137(23.5%) 184(29.3%) 287(4.6%) 314(5.1%)

Patients with cardiologist consultation n = 137 n = 184 0.736 n = 287 n = 314 0.897

  Without echocardiogram 69(50.4%) 88(47.8%) 177(61.7%) 191(60.8%)

  With echocardiogram 68(49.6%) 96(52.2%) 110(38.3%) 123(39.2%)

Patients without cardiologist consultation n = 446 n = 445 0.002 n = 5921 n = 5897 0.938

  Without echocardiogram 266(59.6%) 310(69.7%) 5139(86.8%) 5122(86.9%)

  With echocardiogram 180(40.4%) 135(30.3%) 782(13.2%) 775(13.1%)

Patients with cardiologist consultation and echocardiogram n = 68 n = 96 0.157 n = 110 n = 123 0.281

  EF > 50% 51(75.0%) 60(62.5%) 101(91.8%) 107(87.0%)

  EF 31–50% 10(14.7%) 26(27.1%) 9(8.2%) 14(11.4%)

  EF ≤ 30% 7(10.3%) 10(10.4%) 0(0.0%) 2(1.6%)

Patients without cardiologist consultation with echocardiogram n = 180 n = 135 0.002 n = 782 n = 775 0.797

  EF > 50% 147(81.7%) 92(68.1%) 770(98.5%) 766(98.9%)

  EF 31–50% 23(12.8%) 38(28.2%) 11(1.4%) 8(1.0%)

  EF ≤ 30% 10(5.5%) 5(3.7%) 1(0.1%) 1(0.1%)
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to 49.6% [13]. Conversely, our study did not yield a statis-
tically significant increase in utilization either in AI-high 
or low risk group. However, there is scope for enhance-
ment in this regard. Typical symptoms in patients with 
low LVEF may include dyspnea, orthopnea, paroxysmal 
nocturnal dyspnea, fatigue, and ankle swelling. Evalua-
tion can involve measuring natriuretic peptides, conduct-
ing electrocardiography, and performing chest X-rays 
[20]. Echocardiogram imaging is too resource-intensive 
for screening unselected populations. This aligns with 
our earlier post-hoc findings, leading to more selective 
use of echocardiograms, while those in the control group, 
lacking this AI support, might have been more inclined 
to order echocardiograms as a precautionary measure 
for patients they identified as high-risk through tradi-
tional methods. A more affordable and widely accessible 
test, such as the AI-ECG, could help identify high-risk 
patients who should then undergo further evaluation 
with echocardiography [21]. Echocardiogram is a golden 
standard to diagnose diverse cardiac diseases, such as low 
LVEF, valvular heart diseases, structure heart diseases, 
etc. [22]. Physicians may arrange more echocardiograms 
for patients with a high likelihood of low LVEF after 
thorough assessments. This approach would reduce the 
need to schedule testing for low-risk groups. Therefore, 
the AI-ECG actually prompted physicians to carefully 
assess patient conditions, leading to more patients with 
high likelihood of low LVEF receiving echocardiogram 
(as show in Table  S2). Our investigation revealed that 
employing an AI-ECG algorithm led to a higher detec-
tion rate of low EF in the AI-supported group (34.2% in 
the intervention arm, compared to 20.2% in the conven-
tional group). This suggests a modest but statistically sig-
nificant improvement linked to the use of AI-ECG.

The impact of the tool also depends on the cut-point 
selected to trigger clinician action. In the current study, 
we selected the cut-point used in the initial deriva-
tion study that optimized the sensitivity and specificity 
equally. Only 9.2% of the patients had a positive AI-ECG 
result, and the overall use of echocardiogram was not dif-
ferent between intervention and control groups, provid-
ing some reassurance that even this relatively sensitive 
threshold would not increase overall healthcare utiliza-
tion. In clinical practice, healthcare providers routinely 
integrate diverse information sources, including clini-
cal decision support (CDS) guidance, to inform their 
decision-making processes [23]. Within this framework, 
assistive CDS often necessitates that clinicians criti-
cally evaluate"black-box"CDS recommendations along-
side their own clinical judgment. For instance, when 
assessing the risk of surgical complications, clinicians 
must conduct an independent evaluation that encom-
passes a patient’s medical history, physical examination, 

laboratory findings, and additional diagnostic tests, in 
addition to incorporating CDS insights [24]. This dual 
evaluation process, integral to the clinical workflow, can 
introduce additional time demands and potential deci-
sion delays, particularly when there is misalignment 
between the clinician’s judgment and the CDS recom-
mendations. Such discrepancies may elevate the risk 
to patient safety [25]. In addition to our pre-specified 
primary (new diagnoses of EF ≤ 50%) and secondary 
outcomes (echocardiogram usage and mortality), we 
performed a post-hoc analysis to clarify how cardiology 
consultations may have influenced the detection of newly 
diagnosed low EF. This analysis was introduced because, 
although we noted a higher detection rate of low EF in 
the intervention arm, the overall echocardiogram usage 
did not differ markedly between groups. By examining 
cardiology consultation as an additional factor, we aimed 
to elucidate the pathway through which AI alerts might 
improve diagnostic precision. It is important to acknowl-
edge that this consultation analysis was not part of our 
original trial design. As a result, the findings from this 
post-hoc investigation should be interpreted with caution 
and viewed primarily as hypothesis-generating. Future 
prospective trials could consider including consultation 
metrics as a formally pre-specified endpoint to validate 
our observations in a more controlled and hypothesis-
driven manner.

Previous investigations into AI-enabled ECG alerts 
have largely focused on primary care or community-
based cohorts, where underdiagnosis of low EF may be 
more pronounced. For instance, Yao et  al. conducted a 
pragmatic trial in outpatient settings, demonstrating that 
an AI-ECG alert significantly increased echocardiogram 
orders and new low EF diagnoses [13]. Similar results 
were reported by Attia et al. in a population-based study 
designed to screen for asymptomatic left ventricular sys-
tolic dysfunction [26]. In these outpatient contexts, clini-
cians often have fewer immediate diagnostic resources 
available and may rely on screening tools to help identify 
patients requiring further cardiac evaluation. By contrast, 
our study was conducted in an inpatient environment 
where patients receive more intensive monitoring from 
multiple specialists, which can inherently reduce missed 
diagnoses of cardiovascular dysfunction. Consequently, 
the effect of our AI-based tool manifested primarily in 
improving the efficiency or positive predictive value 
(PPV) of diagnostic testing, rather than simply increas-
ing the frequency of echocardiograms. While the overall 
echocardiogram utilization did not differ substantially 
between the intervention and control groups, patients 
flagged as high risk by AI in the intervention arm had a 
higher yield of truly low EF. These findings highlight that, 
in a setting already characterized by robust diagnostic 
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vigilance, an AI alert can guide more judicious use of 
echocardiogram and consultation—enhancing diagnos-
tic precision without imposing a heavier testing burden. 
Future investigations conducted across various inpatient 
and outpatient settings may help delineate how local 
practice patterns, resource availability, and baseline diag-
nostic thresholds influence the performance and clinical 
impact of AI-ECG alerts.

Our study has several limitations to consider. First, 
it was conducted at a single academic center, which 
may limit the generalizability of the findings to other 
healthcare settings with different patient demograph-
ics or resource availability. Second, while our data were 
collected pragmatically from electronic health records 
(EHR), there remains a possibility of missing or incom-
plete documentation. Third, although we used a Cox 
proportional hazards mixed-effects model to account 
for physician-level variability, other unmeasured con-
founders could still influence the results. Additionally, 
there is a noteworthy discrepancy between our initial 
registry entry (NCT05117970) and the final study design. 
The original protocol specified a primary outcome of EF 
≤ 35% over 90 days and a target sample size of 84,000, 
predicated on a multi-center approach with a longer 
enrollment period. During the early implementation 
phase, however, we determined that EF ≤ 50% was more 
clinically pertinent for inpatients, as it includes those 
with mildly reduced EF. We also found that a 30-day 
follow-up window accurately captured newly diagnosed 
low EF in the inpatient setting without prolonging the 
observation period unnecessarily. Consequently, we 
refined our inclusion criteria, reduced the scope to a sin-
gle center, and updated our trial registry in October 2024 
to reflect these parameters, acknowledging that this tim-
ing was later than ideal. Although any post-hoc modi-
fication to a registered study can raise concerns about 
protocol adherence, we have disclosed all changes and 
their rationale to ensure transparency. Finally, informa-
tion regarding patient symptoms and emergency depart-
ment visits was not collected in this study. Despite these 
limitations, our findings highlight the potential of an AI-
enabled ECG platform to improve early detection of low 
EF in hospitalized patients under non-cardiologist care. 
Future studies involving multiple centers, longer follow-
up periods, and broader patient populations would help 
further validate these results and explore their generaliz-
ability to other clinical environments.

Conclusions
The utilization of an AI algorithm on existing ECGs 
facilitated the early detection of low EF in a substantial 
patient cohort managed within everyday inpatient set-
tings. Given that ECG is a cost-effective test commonly 

conducted for various medical purposes, this algorithm 
has the potential to enhance the early diagnosis and man-
agement of a condition that is frequently asymptomatic 
but is amenable to effective treatments. Notably, this 
study found that the diagnosis rate of low LVEF improved 
without an increase in echocardiogram utilization, likely 
due to careful evaluation after consulting cardiologists. 
This highlights the differences in the application of AI-
ECG in inpatient settings compared to primary care. We 
recommend future research to broadly investigate the 
effectiveness of AI-ECG across different populations.
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